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Passive Microwave Soil Moisture 
Downscaling Using Vegetation Index 
and Skin Surface Temperature
Soil moisture satellite estimates are available from a variety of passive microwave satel-
lite sensors, but their spatial resolution is frequently too coarse for use by land managers 
and other decision makers. In this paper, a soil moisture downscaling algorithm based 
on a regression relationship between daily temperature changes and daily average soil 
moisture is developed and presented to produce an enhanced spatial resolution soil mois-
ture product. The algorithm was developed based on the thermal inertial relationship 
between daily temperature changes and averaged soil moisture under different vegetation 
conditions, using 1/8° spatial resolution North American Land Data Assimilation System 
(NLDAS) surface temperature and soil moisture data, as well as 5-km Advanced Very High 
Resolution Radiometer (AVHRR) (1981–2000) and 1-km Moderate Resolution Imaging 
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and surface 
temperature (2002–present) to build the look-up table at 1/8° resolution. This algorithm 
was applied to the 1-km MODIS land surface temperature to obtain the downscaled soil 
moisture estimates and then used to correct the soil moisture products from Advanced 
Microwave Scanning Radiometer–EOS (AMSR-E). The 1-km downscaled soil moisture 
maps display greater details on the spatial pattern of soil moisture distribution. Two sets 
of ground-based measurements, the Oklahoma Mesonet and the Little Washita Micronet, 
were used to validate the algorithm. The overall averaged slope for 1-km downscaled 
results vs. Mesonet data is 0.219, which is better than AMSR-E and NLDAS, while the spatial 
standard deviation (0.054 m3 m−3) and unbiased RMSE (0.042 m3 m−3) of 1-km downscaled 
results are similar to the other two datasets. The overall slope and spatial standard devia-
tion for 1-km downscaled results vs. Micronet data (0.242 and 0.021 m3 m−3, respectively) 
are significantly better than AMSR-E and NLDAS, while the unbiased RMSE (0.026 m3 m−3) is 
better than NLDAS and further than AMSR-E. In addition, Mesonet comparisons of all three 
soil moisture datasets demonstrate a stronger statistical significance than Micronet com-
parisons, and the p value of 1-km downscaled is generally better than the other two soil 
moisture datasets. The results demonstrate that the AMSR-E soil moisture was successfully 
disaggregated to 1 km. The enhanced spatial heterogeneity and the accuracy of the soil 
moisture estimates are superior to the AMSR-E and NLDAS estimates, when compared with 
in situ observations.

Abbreviations: AEF, Actual Evaporative Fraction; AMSR, Advanced Microwave Scanning Radiometer; 
AMSR2, Advanced Microwave Scanning Radiometer 2; AMSR-E, Advanced Microwave Scanning Radiom-
eter–EOS; ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer; AVHRR, Advanced 
Very High Resolution Radiometer; CMG, Climate Modeling Grid; DisPATCh, Physical And Theoretical scale 
Change; EASE, Equal-Area Scalable Earth; EF, Evaporative Fraction; LST, Land Surface Temperature; MODIS, 
Moderate Resolution Imaging Spectroradiometer; NDVI, Normalized Difference Vegetation Index; NLDAS, 
North American Land Data Assimilation System; SGP, Southern Great Plains; SMAP, Soil Moisture Active 
Passive Mission; SMOS, Soil Moisture and Ocean Salinity mission. 

Soil moisture remote sensing has a long history with microwave radiometry. The 
spatial resolution obtained by a microwave radiometer (hence forth referred to as simply a 
radiometer) is inversely proportional to the diameter of the antenna and directly propor-
tional to the height of the satellite platform for a given frequency. Higher spatial resolution 
is desired by a diverse set of fields of application such as agriculture and monitoring and 
prediction of weather, droughts, and floods. Consequently, to obtain high spatial resolu-
tion data one would need a large aperture antenna or a low orbit. Lowering the altitude 
is undesirable because it reduces temporal frequency and decreases the lifetime of the 
mission. Solutions to the large antenna limitations are currently being investigated using 
the Soil Moisture and Ocean Salinity mission (SMOS) by ESA and Soil Moisture Active 
Passive Mission (SMAP) by NASA, but it remains a problem for many operational systems.

Recognizing the need for improved spatial resolution and the limitations described above, 
other solutions to improve resolution of soil moisture monitoring should be explored. One 
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example is SMAP mission (Entekhabi et al., 2008), set for launch 
in 2014. SMAP will utilize a very large antenna and combined 
radiometer and radar measurements to provide soil moisture at 
higher resolutions than radiometers alone can currently achieve. 
SMAP (Entekhabi et al., 2008) consists of both passive and active 
microwave sensors. The radiometer will have a nominal spatial 
resolution of 36 km, and the active radar will have a resolution 
of 1 km. The active microwave remote sensing data can provide 
a higher spatial resolution observation of backscatter than those 
obtained from a radiometer (order of magnitude: radiometer, 
40 km; radar, 1 km or better). However, radar data are more 
strongly affected by local roughness, microscale topography, and 
vegetation than a radiometer, suggesting that it is difficult to invert 
backscatter to soil moisture accurately. Therefore, the current 
radar alone algorithms cannot meet the accuracy requirements of 
the soil moisture mission (0.04 m3 m−3). SMAP will use high-
resolution radar observations to disaggregate coarse resolution 
radiometer observations to produce a soil moisture product 
at 9-km resolution. On the other hand, soil moisture has been 
retrieved from radiometer data successfully using various sensors 
and platforms, and these retrieval algorithms have an established 
heritage (Schmugge et al., 1974; Njoku and Entekhabi, 1996; 
Lakshmi, 1997).

In this study we implemented an alternative approach to derive 
higher resolution soil moisture that would complement the 
SMAP approach and at the same time has the potential to be 
used immediately with available satellite systems as well as 
downscaling historical satellite products. This method will help to 
establish a long-term record of high spatial resolution soil moisture, 
beginning with the Advanced Microwave Scanning Radiometer 
(AMSR) instrument, which is on board NASA’s Aqua satellite 
and launched in 2002, and continuing with Advanced Microwave 
Scanning Radiometer 2 (AMSR2), which is on board JAXA’s 

GCOM-W1 satellite and launched in 2012 (Imaoka et al., 2010). 
We propose the use of land surface temperature and vegetation 
index data derived from two NASA sensors—AVHRR (since the 
late 1970s) and MODIS—as well as AMSR-E on board the Aqua 
(2002–2011) spacecraft.

Over the past few years various methods have integrated the use of 
active sensors with a higher spatial resolution to downscale passive 
microwave soil moisture retrievals (Narayan et al., 2004; Narayan 
and Lakshmi, 2008; Das et al., 2011). Recently, numerous studies 
have addressed the soil moisture downscaling problem using 
MODIS-sensor derived temperature, vegetation, and other land 
surface variables. There have been numerous major publications 
in this area of study. A method based on a “universal triangle” 
concept was used to retrieve soil moisture from NDVI and Land 
Surface Temperature (LST) data (Piles et al., 2011). A relationship 
between surface soil moisture and soil evaporative efficiency 
was explored for catchment studies in southeastern Australia 
(Merlin et al., 2010). A method to downscale soil moisture by 
using two soil moisture indices, Evaporative Fraction (EF) and 
Actual Evaporative Fraction (AEF), was developed and applied 
in southeastern Arizona (Merlin et al., 2008a,b). A sequential 
model using MODIS as well as Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) data was proposed 
for downscaling soil moisture (Merlin et al., 2009). In addition, 
Merlin et al. (2012) used the algorithm of Physical And Theoretical 
scale Change (DisPATCh) to convert high spatial resolution soil 
temperature from MODIS into soil moisture. They applied this 
method to disaggregate SMOS soil moisture in southeastern 
Australia (Merlin et al., 2012). Kim and Hogue (2012) developed 
an integrated algorithm using enhanced vegetation index and 
surface temperature derived from MODIS to downscale AMSR-E 
soil moisture in California and compared their results with several 
previous downscaling methods (Kim and Hogue, 2012). Table 1 

Table 1. Studies on downscaling soil moisture using various remote sensing and modeling techniques.

Author Methodology Time and region Results

Merlin et al. (2010) Based on the relationship between soil 
evaporative efficiency and soil moisture

NAFE 2006 (Oct.–Nov.), Yanco, 
Southeastern Australia

Mean correlation slope between simulated 
and measured data is 0.94, the most 
accuracy with an error of 0.012 m3/m3

Piles et al. (2011) Build model between LST, 
NDVI and soil moisture

Jan.–Feb. 2010, Murrumbidgee
catchment, Yanco, Southeastern Australia

R2 is between 0.14~0.21 and RMSE 
is between 0.9?0.17 m3 m−3

Merlin et al. (2008a) Downscaling algorithm is derived 
from MODIS and physical based 
soil evaporative efficiency model

NAFE 2006 (Oct.–Nov.), Murrumbidgee 
catchment, Yanco, Southeastern Australia

Overall RMSE is between 1.4?1.8% (v/v)

Merlin et al. (2008b) Based on two soil moisture 
indices EF and AEF

June and August
1990 (Monsoon’90 experiment), USDA-

ARS WGEW in southeastern Arizona

Total accuracy is 3% (v/v) for EF and 2% 
(v/v) for AEF, and correlation coefficient is 
0.66?0.79 for EF and 0.71?0.81 for AEF

Merlin et al. (2009) Sequential model NAFE 2006 (Oct.–
Nov.),Yanco, southeastern Australia

RMSE is -0.062 m3 m−3

and the bias is 0.045 m3 m−3

Merlin et al. (2012) Physical And Theoretical scale 
Change (DisPATCh) method

Jan., Feb. and Sept. 2010, Murrumbidgee 
catchment, Yanco, Southeastern

The correlation coefficient between 
disaggregated and in situ soil moisture 
between 0.70?0.85 in summer

Kim and Hogue (2012) Enhanced vegetation index and surface 
temperature derived from MODIS

SMEX04 field measurement from 
the San Pedro River Basin

Spatial correlation are generally 
from −0.08 to 0.34
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lists these studies, the methods, and significant results of the soil 
moisture downscaling. Furthermore, quite a few of studies have 
reported using dynamic and three-dimensional data assimilation 
techniques to develop soil moisture downscaling algorithms 
(Parada and Liang, 2004; Pan et al., 2009; Sahoo et al., 2012; 
Zhou et al., 2008).

In our proposed downscaling method, we use the relationship 
between soil moisture and surface temperature modulated by 
vegetation. This approach has a background in past studies of 
Mallick et al. (2009), who used the triangular relationship (Goetz, 
1997; Sandholt et al., 2002) between surface temperature and the 
vegetation index derived from the MODIS Aqua sensor data. From 
this, they derived the soil wetness index that was converted to soil 
moisture at a 1-km scale. Minacapilli et al. (2009) used thermal 
infrared observations from an airborne platform to estimate soil 
moisture using the thermal inertia principle for a bare soil field. 
They found that the estimated soil moisture correlated very well 
with in situ observations. Gillies and Carlson (1995) devised a 
method that derived the fractional vegetation and spatial patterns 
of soil moisture using the AVHRR data set and demonstrated 
this method in a region of England. In our method, the diurnal 
temperature range  was used (Karl, 1984), which was affected by 
vegetation (Collatz, 2000), soil moisture, and clouds (Dai and 
Deser, 1999).

 6Data Sources
The state of Oklahoma was selected 
as the study area due to its long 
history of soil moisture research. 
The Ok lahoma Mesonet and 
Little Washita River Experimental 
Watershed Micronet are two long-
term in situ soil moisture networks 
providing a solid foundation 
for soil moisture remote sensing 
research (shown in Fig. 1). The 
Little Washita has been the location 
for various soil moisture field 
experiments, including Southern 
Great Plains (SGP) SGP97, SGP99, 
and SMEX03 (Jackson et al., 1999; 
Jackson et al., 2002), and has been 
a key element in satellite validation 
studies ( Jackson et a l., 2010; 
Mladenova et al., 2011). In addition 
to the ground resources, a variety of 
spaceborne sensors also contributed 
to this study. Descriptions and maps 
of the datasets used in this article are 
shown in Table 2 and Fig. 2. Table 

2 lists the spatial resolution and temporal repeat of these sensors 
and their data products.

NLDAS Data
The North American Land Data Assimilation System (NLDAS, 
2011) phase 2 hourly mosaic data is used in this study. NLDAS 
is run hourly on a geographical grid with a spatial resolution of 
1/8° (12.5 km). The NLDAS data output includes various surface 
variables, such as radiation flux, surface runoff, surface temperature, 
vegetation indices, and soil moisture (Mitchell et al., 2004). Soil, 
vegetation, and elevation are parameterized using high resolution 
datasets (1-km satellite data in the case of vegetation). The forcing 
data (Cosgrove et al., 2003; Luo et al., 2003) and outputs have 
been extensively validated (Lohmann et al., 2004; Robock et al., 
2003; Schaake et al., 2004). The soil moisture downscaling model 
included the use of two variables: surface skin temperature and 
soil moisture at 0 to 10 cm depth. The data used in this study 
correspond to the closest local overpass times of Aqua satellite for 
the Oklahoma region, which are approximately 08:00 and 20:00 
in UTC time.

AMSR-E Data
The Advanced Scanning Microwave Radiometer on board the EOS 
Aqua platform (AMSR-E) collected microwave observations at 
frequencies of 6, 10, 19, 37, and 85 GHz from 2002 to 2011 (Njoku 
et al., 2003). The AMSR-E instrument provided global passive 
microwave measurements of terrestrial, oceanic, and atmospheric 

Fig. 1. Imagery Maps of study region of Oklahoma and the Little Washita Watershed. The locations of the 
Mesonet Stations are denoted in open yellow circles, and the soil moisture sites for Little Washita are noted 
in red dots.
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parameters for hydrological studies from 2002 to 2011 (Njoku et 
al., 2003, Njoku and Chan, 2006). The soil moisture retrievals 
from AMSR-E are posted on 1/4° (25 km) spatial resolution. The 
estimate of AMSR-E soil moisture accuracy is approximately 0.1 
m3 m−3 and cannot be estimated in areas where vegetation biomass 
exceeds 1.5 kg m−2 (Njoku and Li, 1999).

The AMSR-E soil moisture was estimated using the single channel 
algorithm (Jackson, 1993; Jackson et al., 2010). The single channel 
algorithm uses the X-band observations at H-polarization (the 
most sensitive channel) for estimation of soil moisture. The C-band 
observations cannot be used for land surface applications because 
they are significantly affected by radio frequency interference. The 
land surface temperature was estimated using the 37-GHz v-pol 
observations. The AVHRR derived climatological dataset was used 

to account for vegetation impact on microwave radiations emitted 
from the soil surface. For matching with other georeferenced 
datasets, a drop-in-the-bucket method was applied to the AMSR-E 
data, and it was gridded to a 25- by 25-km Equal-Area Scalable 
Earth (EASE) grid cell size. This method averaged all the AMSR-E 
points by determining if their center coordinates were within the 
border of a particular EASE grid cell.

MODIS Data
Surface temperature data corresponded to the Oklahoma local 
times of 01:30 and 13:30, as well as the NDVI from MODIS/
Aqua. MODIS has 36 spectral bands, including visible, near-
infrared, and thermal infrared spectrums, and provides 44 global 
data products (Justice et al., 2002). The algorithms to derive the 
MODIS products are well established and have been extensively 

Table 2. Sources of land surface data used in the downscaling of soil moisture and their spatial resolution and temporal repeat.

Source Data Spatial resolution Temporal repeat

NLDAS Soil moisture content (0–10 cm layer, kg/m2) 1/8° (12.5 km) hourly

Surface skin temperature (K) 1/8° (12.5 km) hourly

AVHRR Normalized difference vegetation index (NDVI) 5 km daily

MODIS Normalized difference vegetation index (NDVI) 5 km biweekly

Land surface temperature (K) 1 km daily

AMSR-E Soil moisture content (m3 m−3) 1/4° (25 km) daily

Mesonet Surface soil moisture content (0–5 cm layer, m3 m−3) 116?117 stations 5 min

Little Washita Watershed Micronet Surface soil moisture content (0–5 cm layer, m3 m−3) 9 stations hourly

Fig. 2. Maps of variables used in the soil moisture downscaling algorithm from 21 July 2005 over Oklahoma, MODIS Aqua 1-km land surface tem-
perature (a) during the day and (b) at night; (c) 1/4° spatial resolution AMSR-E soil moisture; (d) 1/8° spatial resolution NLDAS soil moisture; (e) 
MODIS Aqua 1-km NDVI.
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evaluated, including NDVI (Tucker, 1979; Myneni et al., 1995), 
leaf area index (Myneni et al., 2002), land cover classification 
(DeFries et al., 1998; Friedl et al., 2002), and surface temperature 
(Wan and Li, 1997). In the current study, surface temperature 
and NDVI products at two different spatial resolutions were 
used for downscaling soil moisture. The datasets included 1-km 
daily surface temperature (MYD11A1), 1-km biweekly NDVI 
(MYD13A2), and 500-m biweekly Climate Modeling Grid 
(CMG) NDVI (MYD13C1). The dry down lines of soil moisture 
during May 2004, July 2005, and August 2005 in Oklahoma were 
examined. During these 3 mo, clear days (due to the requirement 
of surface temperature in our algorithm) were selected for the 
downscaling algorithm application.

AVHRR Data
Before the launch of the Aqua satellite and the availability of 
MODIS data, the 5-km CMG daily NDVI data from AVHRR 
sensor (AVH13C1) was used. The AVHRR sensor is on board 
the NOAA satellites, including N07, N09, N11, and N14, and 
provides global and long-term surface ground measurements. 
Daily AVHRR NDVI data are available between 1981 and 
1999 (Land Long Term Data Record, 2011). Because the N14 
orbit drifted greatly and degraded the data quality, AVHRR 
NDVI data after year 2000 was not used in this soil moisture 
downscaling curve fitting.

Oklahoma Mesonet
The Oklahoma Mesonet is a network of 120 automated 
environmental monitoring stations with at least one site in 
each of the 77 counties in Oklahoma (McPherson et al., 2007). 
Environmental variables are obtained at intervals spanning every 
5 to 30 min, depending on the variable. The data quality is verified 
by a series of automated and manual checks, performed by the 
Oklahoma Climatological Survey (Illston et al., 2008). In this 
investigation, 5-cm soil moisture content measurements from 116 
stations were extracted and geolocated for comparison with the 
1-km downscaled AMSR-E and NLDAS soil moisture values. The 
locations of the Oklahoma Mesonet stations are denoted by open 
yellow circles in Fig. 1.

Little Washita Watershed Micronet
The Little Washita Watershed is located in the southwestern 
portion of Oklahoma and includes more than 20 stations 
within a 25- by 25-km region referred to as the Little Washita 
Micronet. The point watershed soil moisture observations from 
nine stations with the closest time to the Aqua overpass times: 
1:30 and 13:30 were extracted and then averaged to match up 
with the estimated average daily soil moisture (Cosh et al., 2004; 
Jackson et al., 2010). The locations of these stations are denoted 
by red dots in Fig. 1.

 6Methodology
Daily NDVI Interpolation
The AVHRR and MODIS NDVI products at spatial resolutions 
of 5- and 1-km were used for model building and implementation. 
The biweekly 5-km MODIS NDVI, between 2003 and 2011, was 
aggregated to 12.5 km and geolocated to NLDAS pixels for gap 
filling the AVHRR NDVI data. The biweekly 1-km MODIS 
NDVI between 2003 and 2011 was input to the model for 
retrieving 1-km soil moisture. To provide 5- and 1-km resolution 
NDVI estimates on a daily basis, all the NDVI records through 
each year of 2003 through 2011 were fitted using the sinusoidal 
method as

NDVId = a0sin(a1D + a2) + a3 [1]

where a0, a1, a2, and a3 are the regression coefficients; NDVId is 
the daily NDVI value; and D is the day of year. This equation was 
applied to the biweekly NDVI data, for all years, to obtain daily 
NDVI values. This method assumes a single crop cycle and has to 
be modified for locations with multiple crop cycles. So the daily 
NDVI varies in a near sinusoidal fashion through all the days every 
year (Zhang et al., 2003; Knight et al., 2006). Almost the entire 
study domain is dominated by forest, rangeland, or winter wheat 
(Triticum aestivum L.) (single crop cycle).

Thermal Inertia Theory
Thermal inertia is the resistance of a material to temperature change, 
which is indicated by time dependent variations in temperature 
during a full heating/cooling cycle. It is defined as the square root 
of the product of the material’s bulk thermal conductivity (k) and 
volumetric heat capacity, where the latter is the product of density 
(r) and specific heat capacity (c):

I k c= r   [2]

An approximation to thermal inertia can be obtained from the 
amplitude of the diurnal temperature curve. The temperature of 
a material with low thermal inertia will change more during the 
day than a material with high thermal inertia. Many attempts 
have been made since the Heat Capacity Mapping Mission 
(NSSDC ID: 1978-041A-01; NASA, 2011), the first of a series 
of Applications Explorer Missions (Heilman and Moore, 1982), 
to capture the thermal characteristics of the earth surface. The 
objective of the Heat Capacity Mapping Mission was to provide 
comprehensive, accurate, high-spatial-resolution thermal surveys 
of the surface of the earth to determine thermal inertia.

The heat capacity of water is greater than dry soil. Therefore, soil 
with higher moisture content corresponds to smaller temperature 
changes. Because soil volumetric heat capacity increases with 
higher soil moisture, it is our assertion that lower daily average 
soil moisture (qav) will correspond to higher daily temperature 
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differences (DTs) and vice-versa. Higher soil moisture also 
corresponds to higher evapotranspiration, cooling the soil surface. 
DTs can be described as

s max minT T TD = -  [3]

where Tmax and Tmin are the daily highest and lowest temperatures, 
respectively. The two local overpass times of MODIS/Aqua 
approximately correspond to the highest and lowest temperatures.

Construction of the Downscaling Model
The MODIS sensor provides two very important products: NDVI 
and surface temperature Ts. In this study, these two variables were 
extracted for each 1-km MODIS pixel (i, j) in the 1/4° gridded 
AMSR-E radiometer data. We denote these variables by NDVI 
(i, j) and Ts (i, j), respectively. The AMSR-E derived soil moisture, 
corresponding to the 01:30 (descending orbit) overpass, is denoted 
as Qa while 13:30 (ascending orbit) overpass is denoted as Qp for 
the entire 1/4° pixel. Soil moisture values for AM and the PM 
overpass for each of the MODIS pixels are referred as qa(i, j) and 
qp(i, j), respectively. The time-average value of the pixel soil moisture 
is denoted as qav(i, j), which refers to the predicted arithmetic mean 
of soil moisture for the 1-km MODIS pixel of the AM and PM 
overpass (see Fig. 3). The MODIS sensor on Aqua was used because 
it matched the time of AMSR-E soil moisture estimates.

Three principles motivate the pixel-based downscaling algorithm. 
First, we must consider that the soil moisture history of each pixel 
is unique with regard to precipitation, evapotranspiration, and 
runoff and can be summarized by the average soil moisture qav (i, 
j). Second, based on the thermal inertia theory, the thermal inertia 

and soil moisture depend on soil thermal conductivity, which for a 
wet pixel will show a smaller change and for a dry pixel will show 
a larger change in surface temperature (Minacapilli et al., 2009) 
due to modulation by evapotranspiration. Wetter pixels have larger 
evapotranspiration and lower surface temperature change and vice-
versa (Kurc and Small, 2004). Third, vegetation biomass within 
each pixel will vary and can also modulate the change of surface 
temperature, which is represented by DTs (Merlin et al., 2010; 
Lakshmi et al., 2011). The comparison of the pixel sizes between 
the three datasets and the regression curve building method is 
shown in Fig. 3.

The key to the proposed disaggregation procedure is establishing 
the relationship between the change in surface temperature and 
the average soil moisture for the 1-km pixel. To construct the 
regression relationship, we plotted separately the daily NLDAS 
from all the years of a particular month of the study period (i.e., 
the July plot will have data for the surface temperature change and 
the average NLDAS soil moisture for all years from 1981 to 2011). 
The data for equal NDVI lines at increments of 0.3 in NDVI were 
subsequently organized. For example, during some months (e.g., 
January), vegetation growth was limited and few NDVI lines in the 
upper Midwest might be constructed. On the other hand, during 
other periods, such as July in the upper Midwest, rapid changes 
in NDVI due to crop growth could occur and many NDVI lines 
would be created. The daily NLDAS lines based on temperature 
difference and averaged soil moisture at 01:30 and 13:30 of all 
the days from 1981 to 2011 (except 2000–2002) were then fitted.

For simplicity, a linear regression model between the daily average 
soil moisture qav(s, t) and daily temperature difference DTs(s, t) at 
NLDAS scale for each month was developed as follows

qav(s, t) = a0 + a1DTs(s, t) [4]

where s and t represent the NLDAS pixel location, a0 and a1 are the 
regression model coefficients that correspond to several different 
NDVI intervals. The growing season between May and September 
was examined in this study, and the NDVI was subdivided into 
three intervals: 0–0.3, 0.3–0.6, and 0.6–1. For each month, three 
NLDAS-based regression lines of each pixel, corresponding to the 
three NDVI intervals, were built and the regression coefficients 
were obtained.

Correction of 1-km Downscaled Soil Moisture
We presumed that the soil moisture variation within each NLDAS 
pixel could be ignored and the downscaling model at 1/8° could be 
applied to the 1-km MODIS surface temperature. On a daily basis, 
we used the lines corresponding to the NLDAS data closest to the 
MODIS pixel to calculate the 1-km averaged soil moisture qav(i, j) 
from the DTs(i, j) of each 1-km MODIS pixel by Eq. [4]. We then 
averaged qav(i, j) from all the 1-km MODIS pixels and compared 
the values to daily average AMSR-E soil moisture (Qa + Qp)/2, 

Fig. 3. (a) The various elements in the disaggregation procedure 
and (b) construction of the lines corresponding to constant NDVI 
between average soil moisture and change in surface temperature.



www.VadoseZoneJournal.org p. 7 of 19

and then corrected each qav(i, j) with the difference between (Qa + 
Qp)/2 and averaged qav(i, j) within the AMSR-E pixel. The cloud-
covered or data gap pixels of MODIS and AMSR-E were not used 
in the calculation. The corrected soil moisture qavc(i, j) is given by

( ) ( )
a p

avc av av

,

1
, , ( , )

2 i j
i j i j i j

N

é ùæ öQ +Q ÷çê ú÷q =q + ç - q÷ê úç ÷÷çè øê úë û
å   [5]

where N is the number of 1-km qav(i, j) within the AMSR-E 
pixel. We subsequently generated daily values of qavc(i, j) at 1 
km. This satisfied the following conditions: (i) the average of the 
disaggregated soil moistures over the AMSR-E pixel is the same 
as that recorded by AMSR-E; (ii) the MODIS 1-km vegetation 
modulates the distribution of the disaggregated soil moisture 
through its relationship with the daily change in the MODIS 
1-km surface temperature; and (iii) the 1-km scale changes in 
surface temperature is reflected in the soil moisture distribution as 
evidenced in the disaggregated soil moisture. The limitation of this 
methodology is that it can only be applied over areas with no cloud 
cover. The data flow diagram for this algorithm is shown in Fig. 4.

 6Results
qav–DTs Regression Lines
Figure 5 shows the regression fit results between NLDAS derived 
daily temperature difference and daily average soil moisture of 
a pixel (101.875?102°W, 35.125?35.625°N) for the growing 
months of May, July, and August. Notice that the daily average 
soil moisture values for all the months generally range between 
0.05 and 0.3 m3 m−3. The points that correspond to each NDVI 
interval (0–0.3, 0.3–0.6, and 0.6–1.0) yield nearly parallel lines 

(R2 values for July are 0.54, 0.56, and 0.40, respectively, for each 
NDVI interval). The relationship between daily temperature 
difference (DTs) and daily average soil moisture (qav) of the 
particular NLDAS pixel (Fig. 5) of different NDVI intervals 
was also examined by Student’s t test. The results show that the 
relationships for May 2004, July 2005, or August 2005 at a = 0.05 
level are statistically significant through all three NDVI intervals. 
Further, the daily average soil moisture has a negative relationship 
with the daily temperature change, which is consistent with the 
assumptions that (i) the temperature change between morning and 
night is determined by pixel wetness and (ii) vegetation modulates 
the change of surface temperature and the pixel with higher 
vegetation is less sensitive to the temperature change.

1-km Downscaled Soil Moisture Analysis
Examples of maps of daily 1-km downscaled soil moisture are 
shown for 22 May 2004, 17 July 2005, and 9 Aug. 2005 (Fig. 6). 
The 1-km downscaled soil moistures in the lower Mideast part of 
Oklahoma (Fig. 6iii, vi, and ix) were missing because precipitation 
and heavy cloud cover dominated this area, resulting in missing 
MODIS surface temperature data. This area also corresponded to 
a gap between AMSR-E sensor swaths. These downscaled maps 
illustrate the pattern of soil moisture distribution where soil 
moisture content gradually increases from west to east, which 
corresponds to the NDVI variation in Oklahoma. In addition, the 
1-km downscaled soil moisture maps also exhibit similar spatial 
patterns as those of AMSR-E and NLDAS.

The NLDAS soil moisture (Fig. 6i, iv, and vii), which is obtained 
from models, always has complete coverage because it is not 
impacted by cloud cover or missing data due to gaps in swath 

Fig. 4. Data flow of the soil moisture downscaling algorithm
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coverage. On 22 May 2004 (Fig. 6i– iii), a wet area in the northeast 
corner of Oklahoma was not clearly shown by either the AMSR-E 
or the 1-km downscaled soil moisture. In general the spatial 
patterns of the three estimates for the 22 May 2004 case resemble 
each other. On 17 July 2005, the western half of Oklahoma was 
very dry with soil moisture close to 0.02 m3 m−3 and with larger 

values in the east. The spatial structure shown by the 1-km soil 
moisture demonstrated variability in the dry western part of the 
state, which was not observable using the 1/4° AMSR-E estimates 
alone. In addition, the 1-km soil moisture captured the wet area in 
the east central part of the state. A similar west-to-east dry-to-wet 

Fig. 5. Daily temperature difference versus daily average soil moisture corresponding to (101.875?102°W, 35.125?35.625°N) and different 
NDVI values for May, August, and July.

Fig. 6. Maps of the NLDAS, AMSR-E, and 1-km soil moisture (m3 m−3) from May 22, 2004, July 17, 2005 and August 9, 2005 in Oklahoma.
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pattern could be observed in all the estimates of the soil moisture 
for 9 August 2005.

Focusing on the Little Washita region (Fig. 7), the spatial 
distribution of soil moisture exhibited greater heterogeneity in 
1-km downscaled map, depicting far more dry 1-km pixels than 
shown in the AMSR-E and NLDAS maps, easily explainable by 
single AMSR-E pixel that covers the entire watershed and the few 
(?5) NLDAS pixels. The ability to show heterogeneity in soil 
moisture at the catchment scale is one of the strong points of the 
1-km downscaled soil moisture product. This is seen especially in 
a time series of soil moisture changes in 1-km downscaled map 
of the Little Washita watershed during July 2005 (Fig. 8). Here, 
the soil moisture dry down can be clearly observed through these 
days, particularly in the westernmost portion of the watershed, as 
well as a smaller subcatchment near the middle-east portion of the 
larger watershed.

Validation by Oklahoma Mesonet Soil 
Moisture Data
Validating the disaggregation algorithm was done by comparing 
two sets of ground observations—Oklahoma Mesonet and 
Little Washita watershed soil moisture values—with the three 
gridded soil moisture datasets—NLDAS, AMSR-E, and 1-km 

disaggregated soil moisture. The ground observation soil moisture 
points were compared with closest pixel of the three gridded soil 
moisture datasets. We set a threshold for the minimum number of 
ground observation points to compare with the three gridded soil 
moisture datasets from the Mesonet and Little Washita watershed 
(20 points and 5 points, respectively). Because the NLDAS uses 
Oklahoma Mesonet soil moisture (Luo et al., 2003) and has been 
scaled to Mesonet data, the NLDAS soil moisture should perform 
better than the AMSR-E and 1-km estimates.

The statistical variables being validated include slope, RMSE, 
unbiased RMSE, and spatial SD. The equations are as follows:
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Fig. 7. Maps of the NLDAS, AMSR-E, and 1-km soil moisture (m3 m−3) from 22 May 2004, 17 July 2005, and 2 August 2005 in Little Washita.
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where m is the slope of linear regression between estimated 
soil moisture q̂ .  (1 km, AMSR-E and NLDAS) and in 
situ soil moisture q (Mesonet and Micronet). RMSE* is the 
unbiased RMSE.  *ˆ

iq  is the predicted soil moisture value 
from linear regression between estimated soil moisture 
q̂ and in situ soil moisture q, s is the spatial standard 
deviation of each soil moisture data, including estimated 
soil moisture and in situ soil moisture, n is the number 
of data points over the study area (Mesonet or Micronet) 
collected in a single day. The RMSE and RMSE* are used 
to characterize the uncertainty of estimated soil moisture 
q̂  to in situ soil moisture q. The spatial standard deviation 

s is used to represent the spatial variation of the study area. 
The Chi-squared test was also applied for both Mesonet and 
Micronet comparisons for examining the goodness of fit, 
which is specified at a = 0.05 level.

Table 3 shows the statistical values of comparisons with 
Mesonet data for single days during May 2004, July 2005, 
and August 2005, while Table 4 shows the monthly 
overall and total averaged values of the 3 mo. From Table 
3, we note that the slope of 1-km downscaled comparison 
is generally better than NLDAS and AMSR-E, while the 
unbiased RMSE and spatial standard deviation of some 
days are better as well. The p value of Chi-squared test 
(at a = 0.05 level) of 1-km downscaled soil moisture is 
statistically better than NLDAS and AMSR-E. Table 3 
also shows the day-to-day variability of the performance of 
the 1-km soil moisture estimates as compared to AMSR-E 
and NLDAS, as well as the changes in the spatial standard 
deviation as compared to the Mesonet estimates.

From Table 4, we observed that the slope of 1-km 
downscaled comparison for 2 mo (July 2005 and August 
2005), which are 0.078 and 0.2 m3 m−3, respectively, is 
better than NLDAS and AMSR-E, and the total averaged 
slope of 1-km downscaled comparison as well. Although 
the RMSE of 1-km downscaled comparison is worse than 
NLDAS and AMSR-E, the unbiased RMSE of 1-km 
downscaled comparison for all 3 mo and overall is very 
similar to NLDAS and AMSR-E (0.042 m3 m−3 versus 
0.04 and 0.042 m3 m−3, respectively). In addition, the spatial 
standard deviation of 1-km downscaled results on May 2004 and 
August 2005, which is 0.058 and 0.044 m3 m−3, respectively, are 
closer to Mesonet than NLDAS, which is 0.066 and 0.047 m3 m−3 
and a little further than AMSR-E, which is 0.056 and 0.047 m3 
m−3. These results demonstrate that the disaggregated soil moisture 
provides improvements in both accuracy and spatial resolution.

We also note that the soil moisture values for all three datasets 
are systematically lower than the in situ Mesonet observation 
values. This could be attributed to several factors. First, the 
accuracy of AMSR-E soil moisture is limited. This methodology 

is based on preserving the 25-km mean soil moisture from the 
AMSR-E platform. So, any overall day-to-day bias presented in the 
AMSR-E soil moisture retrievals will appear in the disaggregated 
1-km estimates. Second, the MODIS retrieved daytime surface 
temperature is higher than the NLDAS land surface model 
output, particularly during the growing season. This may cause 
the daily temperature difference to be greater than NLDAS 
and consequently the downscaled soil moisture would be lower 
than NLDAS. Third, the Oklahoma Mesonet is equipped with 
sensors to measure soil water potential (model 229-L, Campbell 
Scientific), which is then converted to volumetric soil moisture. 
Biases in this conversion may be present in gravimetric and neutron 

Fig. 8. (i–v) Time-series maps of 1-km soil moisture (m3 m−3) of 5 d on July 2005 
show the dry-down tendency in Little Washita region.
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Table 3. Comparison statistics between the 1-km downscaled, NLDAS and AMSR-E soil moisture compared to the Oklahoma Mesonet for 3 mo. The 
1-km downscaled values are underlined.

Day Dataset Slope RMSE Unbiased RMSE Spatial SD p value Number of points

———————————— m3 m−3 ————————————
2 May 2004 1-km downscaled 0.404 0.136 0.063 0.074 0.019 81

AMSR-E 0.442 0.132 0.061 0.07 0.024

NLDAS 0.552 0.101 0.056 0.071 0.132

Mesonet 0.067

4 May 2004 1-km downscaled 0.268 0.144 0.057 0.069 0.009 81

AMSR-E 0.35 0.141 0.055 0.065 0.009

NLDAS 0.497 0.108 0.052 0.069 0.1

Mesonet 0.058

6 May 2004 1-km downscaled −0.285 0.138 0.032 0.031 0.005 87

AMSR-E −0.341 0.135 0.033 0.026 0.006

NLDAS −0.579 0.108 0.033 0.027 0.063

Mesonet 0.034

7 May 2004 1-km downscaled 0.37 0.151 0.053 0.056 0.006 35

AMSR-E 0.395 0.146 0.051 0.052 0.01

NLDAS 0.423 0.118 0.048 0.073 0.073

Mesonet 0.055

8 May 2004 1-km downscaled 0.241 0.108 0.032 0.057 0.167 45

AMSR-E 0.263 0.109 0.032 0.052 0.165

NLDAS 0.703 0.086 0.031 0.046 0.378

Mesonet 0.033

9 May 2004 1-km downscaled 0.544 0.119 0.050 0.041 0.176 24

AMSR-E 0.72 0.116 0.049 0.041 0.192

NLDAS 1.071 0.096 0.043 0.072 0.322

Mesonet 0.052

20 May 2004 1-km downscaled 0.462 0.105 0.064 0.062 0.146 57

AMSR-E 0.453 0.101 0.061 0.06 0.148

NLDAS 0.717 0.109 0.06 0.08 0.103

Mesonet 0.072

22 May 2004 1-km downscaled 0.884 0.128 0.025 0.1 0.027 34

AMSR-E 0.993 0.122 0.028 0.113 0.041

NLDAS 1.501 0.111 0.016 0.101 0.086

Mesonet 0.062

23 May 2004 1-km downscaled 1.04 0.11 0.054 0.063 0.038 60

AMSR-E 0.496 0.11 0.052 0.056 0.028

NLDAS −0.01 0.107 0.049 0.075 0.048

Mesonet 0.06

30 May 2004 1-km downscaled −0.012 0.118 0.023 0.043 0.107 37

AMSR-E 0.112 0.114 0.022 0.043 0.109

NLDAS 0.14 0.122 0.018 0.056 0.049

Mesonet 0.029

31 May 2004 1-km downscaled 0.25 0.105 0.041 0.043 0.073 65

AMSR-E 0.254 0.099 0.039 0.039 0.095

NLDAS 0.488 0.106 0.037 0.053 0.086

Mesonet 0.042
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Day Dataset Slope RMSE Unbiased RMSE Spatial SD p value Number of points

———————————— m3 m−3 ————————————
3 July 2005 1-km downscaled 0.237 0.166 0.059 0.055 0.002 85

AMSR-E 0.039 0.161 0.064 0.034 0.007

NLDAS 0.095 0.119 0.063 0.025 0.117

Mesonet 0.064

8 July 2005 1-km downscaled 0.224 0.177 0.047 0.061 0.002 85

AMSR-E 0.08 0.169 0.048 0.052 0.005

NLDAS 0.168 0.106 0.047 0.045 0.224

Mesonet 0.048

10 July 2005 1-km downscaled −0.043 0.174 0.053 0.06 0.001 83

AMSR-E −0.005 0.162 0.053 0.052 0.004

NLDAS 0.213 0.113 0.051 0.048 0.127

Mesonet 0.053

12 July 2005 1-km downscaled 0.032 0.162 0.047 0.059 0.003 90

AMSR-E −0.007 0.154 0.047 0.052 0.008

NLDAS −0.013 0.091 0.047 0.046 0.361

Mesonet 0.047

17 July 2005 1-km downscaled 0.176 0.168 0.043 0.057 – 95

AMSR-E 0.228 0.165 0.043 0.052 –

NLDAS 0.16 0.104 0.043 0.045 0.145

Mesonet 0.043

21 July 2005 1-km downscaled −0.262 0.13 0.031 0.047 0.009 99

AMSR-E −0.141 0.125 0.031 0.05 0.014

NLDAS −0.106 0.09 0.031 0.047 0.215

Mesonet 0.031

22 July 2005 1-km downscaled −0.146 0.16 0.035 0.051 – 102

AMSR-E −0.027 0.153 0.035 0.05 –

NLDAS −0.108 0.112 0.035 0.046 0.059

Mesonet 0.035

28 July 2005 1-km downscaled 0.345 0.146 0.043 0.076 0.01 103

AMSR-E 0.305 0.137 0.044 0.058 0.017

NLDAS 0.217 0.098 0.044 0.047 0.209

Mesonet 0.045

29 July 2005 1-km downscaled 0.295 0.166 0.039 0.073 – 79

AMSR-E 0.16 0.159 0.039 0.047 –

NLDAS 0.098 0.119 0.039 0.034 0.031

Mesonet 0.039

31 July 2005 1-km downscaled −0.077 0.155 0.032 0.051 – 106

AMSR-E −0.067 0.145 0.032 0.056 –

NLDAS −0.255 0.111 0.032 0.048 0.036

Mesonet 0.032

2 Aug. 2005 1-km downscaled 0.056 0.164 0.036 0.036 – 80

AMSR-E 0.077 0.16 0.036 0.051 –

NLDAS −0.307 0.124 0.035 0.051 0.015

Mesonet 0.053

4 Aug. 2005 1-km downscaled −0.346 0.143 0.025 0.026 0.045 26

Table 3. Continued.
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probe samples, of which RMSE is between 0.006 and 0.052 m3 
m−3 (Illston et al., 2008). From the matric potential values, soil 

water content is calculated by the van Genuchten (1980) equation, 
using coefficients based on soil parameters collected at the time 

Day Dataset Slope RMSE Unbiased RMSE Spatial SD p value Number of points

———————————— m3 m−3 ————————————
AMSR-E −0.46 0.138 0.025 0.033 0.067

NLDAS −1.17 0.106 0.023 0.035 0.427

Mesonet 0.059

9 Aug. 2005 1-km downscaled 0.119 0.167 0.041 0.041 – 51

AMSR-E 0.043 0.162 0.041 0.049 –

NLDAS 0.051 0.113 0.041 0.051 0.086

Mesonet 0.046

24 Aug. 2005 1-km downscaled 0.393 0.147 0.047 0.055 0.073 34

AMSR-E 0.315 0.144 0.047 0.05 0.085

NLDAS 0.316 0.064 0.047 0.047 0.751

Mesonet 0.034

25 Aug. 2005 1-km downscaled 0.377 0.118 0.05 0.065 0.235 27

AMSR-E 0.366 0.122 0.05 0.049 0.207

NLDAS 0.121 0.062 0.054 0.049 0.823

Mesonet 0.046

30 Aug. 2005 1-km downscaled 0.601 0.18 0.024 0.039 0.003 44

AMSR-E 0.38 0.173 0.025 0.052 0.003

NLDAS 0.666 0.105 0.024 0.05 0.367

Mesonet 0.051

Table 4. Monthly generalized comparison statistics between the 1-km downscaled, NLDAS and AMSR-E soil moisture compared to the Oklahoma 
Mesonet for 3 mo. The 1-km downscaled values are underlined.

Day Dataset Slope RMSE

Unbiased

RMSE Spatial SD Number of points

——————————————— m3 m−3 ———————————————
May 2004 1-km downscaled 0.379 0.124 0.045 0.058 606

AMSR-E 0.376 0.120 0.044 0.056

NLDAS 0.500 0.107 0.040 0.066

Mesonet 0.051

July 2005 1-km downscaled 0.078 0.160 0.043 0.059 927

AMSR-E 0.057 0.153 0.044 0.050

NLDAS 0.047 0.106 0.043 0.043

Mesonet 0.044

August 2005 1-km downscaled 0.200 0.153 0.037 0.044 262

AMSR-E 0.120 0.150 0.037 0.047

NLDAS −0.054 0.096 0.037 0.047

Mesonet 0.045

Total 1-km downscaled 0.219 0.146 0.042 0.054 1795

AMSR-E 0.184 0.141 0.042 0.051

NLDAS 0.164 0.103 0.040 0.052

Mesonet 0.047

Table 3. Continued.
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of installation. In addition, Minet et al. (2012) used ground 
penetrating radar derived soil moisture to study the uncertainties 
of field scale variability of surface soil moisture and concluded 
that these arise from the errors introduced in mapping and 
interpolation, and model inadequacies.

It has been observed in the data series that this methodology 
can result in a biased high soil moisture estimate in the Mesonet, 
compared to other sampling methods. Mesoscale models typically 
also provide high soil moisture estimates due to their shortcomings 
in modeling soil water infiltration. Because of these independent 
deficiencies, both the Mesonet soil moisture and NLDAS soil 
moistures are biased wet. The soil moisture estimates were rescaled 
to remove the bias to mitigate the calibration bias between different 
soil moisture datasets.

Validation Using Little Washita Watershed Soil 
Moisture Data
Figure 9a,b shows the overall soil moisture and detrended 
soil moisture comparisons of NLDAS, AMSR-E, and 1-km 
downscaled data, with Little Washita Micronet. Table 5 shows 
the statistical values comparing Micronet data for single days on 
May 2004 and July 2005, while Table 6 shows the monthly overall 
and total averaged results of the 2 mo (August 2005 did not have 
enough valid values, so it was dropped). From Table 5, the slope 
of the 1-km downscaled results is obviously better than NLDAS 

and AMSR-E, while the unbiased RMSE of some days is better 
than either NLDAS or AMSR-E. In addition, when comparing 
the Mesonet data, the spatial standard deviation for 1 km is 
significantly improved and much closer to Micronet than NLDAS 
and AMSR-E. The results of Chi-squared test (at a = 0.05) of all 
three dataset are not as good as the Mesonet comparison. However, 
improvement of the p value of 1-km downscaled results can be 
noticed comparing with the other two soil moisture datasets.

From Table 6, the overall slope and spatial standard deviation for 
1-km downscaled result are 0.242 and 0.021 m3 m−3, respectively, 
which shows significant advantages compared to NLDAS (0.096 
and 0.007 m3 m−3, respectively) and AMSR-E (0.076 and 0.005 
m3 m−3, respectively). The overall spatial standard deviation 
of Micronet observations was found to be 0.028 and the 1-km 
spatial standard deviation is 0.021—much closer to the Micronet 
observations as compared to AMSR-E and NLDAS, with 0.005 
and 0.007, respectively. This will be particularly important in small 
watershed studies when one pixel of NLDAS might cover an entire 
catchment and not provide information on spatial variability. In 
addition, the unbiased RMSE of 1-km downscaled result is also 
better than NLDAS. Results show that RMSE 0.024 versus 0.025 
for NLDAS on May 2004, 0.027 versus 0.031 for NLDAS on 
July 2005, and 0.026 versus 0.028 for NLDAS of total average. 
By analyzing the comparison plots of spatial standard variation 
between estimated soil moisture and Mesonet in situ data (Fig. 10), 

Table 5. Comparison statistics between the 1-km downscaled, NLDAS and AMSR-E soil moisture compared to the Little Washita soil moisture obser-
vations for 3 mo. The 1-km downscaled values are underlined.

Day Dataset Slope RMSE Unbiased RMSE Spatial SD p value Number of points

—————————————— m3 m−3 ————————————

4 May 2004 1-km downscaled 0.083 0.044 0.043 0.015 0.882 9

AMSR-E 0.083 0.041 0.031 0.005 0.891

NLDAS 0.158 0.048 0.04 0.016 0.835

Micronet 0.044

6 May 2004 1-km downscaled 0.1 0.052 0.041 0.015 0.785 9

AMSR-E 0.1 0.041 0.026 0.006 0.863

NLDAS 0.173 0.058 0.036 0.014 0.729

Micronet 0.042

8 May 2004 1-km downscaled 0.346 0.077 0.017 0.012 0.662 9

AMSR-E 0.165 0.069 0.009 0.004 0.686

NLDAS 0.145 0.078 0.022 0.011 0.660

Micronet 0.023

15 May 2004 1-km downscaled 0.149 0.037 0.017 0.01 0.889 9

AMSR-E – 0.05 0.036 0.004 0.810

NLDAS 0.065 0.035 0.033 0.01 0.912

Micronet 0.036

22 May 2004 1-km downscaled 0.526 0.059 0.018 0.021 0.719 6

AMSR-E 0.034 0.051 0.014 0.001 0.746

NLDAS 0.284 0.039 0.014 0.007 0.794

Micronet 0.021
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Day Dataset Slope RMSE Unbiased RMSE Spatial SD p value Number of points

—————————————— m3 m−3 ————————————

23 May 2004 1-km downscaled 0.459 0.068 0.018 0.019 0.614 8

AMSR-E 0.084 0.055 0.011 0.002 0.673

NLDAS 0.16 0.046 0.017 0.006 0.711

Micronet 0.02

24 May 2004 1-km downscaled 0.812 0.075 0.013 0.02 0.577 9

AMSR-E 0.013 0.063 0.008 0.002 0.626

NLDAS 0.179 0.045 0.015 0.006 0.702

Micronet 0.017

30 May 2004 1-km downscaled 0.438 0.092 – 0.009 0.730 5

AMSR-E – 0.072 0.023 0.001 0.770

NLDAS −0.002 0.043 – – 0.842

Micronet 0.012

3 July 2005 1-km downscaled 0.237 0.066 0.064 0.028 0.747 9

AMSR-E 0.039 0.049 0.058 0.005 0.775

NLDAS 0.095 0.061 0.05 0.004 0.832

Micronet 0.066

8 July 2005 1-km downscaled 0.224 0.065 0.048 0.030 0.813 9

AMSR-E 0.08 0.039 0.039 0.004 0.669

NLDAS 0.168 0.021 0.044 0.010 0.810

Micronet 0.050

12 July 2005 1-km downscaled 0.032 0.049 0.029 0.025 0.864 9

AMSR-E −0.007 0.02 0.023 0.003 0.840

NLDAS −0.013 0.033 0.03 0.005 0.785

Micronet 0.032

17 July 2005 1-km downscaled 0.176 0.05 – 0.026 0.825 6

AMSR-E 0.228 0.033 – 0.002 0.871

NLDAS 0.16 0.057 – 0.002 0.806

Micronet 0.011

22 July 2005 1-km downscaled −0.146 0.055 0.009 0.013 0.759 9

AMSR-E −0.027 0.029 0.015 0.005 0.813

NLDAS −0.108 0.051 0.017 0.001 0.686

Micronet 0.009

28 July 2005 1-km downscaled 0.345 0.084 – 0.030 0.725 5

AMSR-E 0.305 0.06 – 0.003 0.750

NLDAS 0.217 0.085 – 0.004 0.683

Micronet 0.020

29 July 2005 1-km downscaled 0.295 0.048 0.012 0.027 0.787 9

AMSR-E 0.16 0.042 0.012 0.015 0.759

NLDAS 0.098 0.07 0.014 0.002 0.621

Micronet 0.005

30 July 2005 1-km downscaled −0.204 0.08 0.002 0.034 0.036 5

AMSR-E −0.210 0.053 – 0.007 0.036

NLDAS −0.238 0.056 – 0.002 0.036

Micronet 0.016

Table 5. Continued.
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we show that the spatial standard variation of 1 km results is more 
systematically distributed than NLDAS and AMSR-E and also 
closer to the in situ soil moisture.

 6Conclusions and Future Work
In this study, a soil moisture downscaling algorithm based on 
NLDAS derived regression relationship related daily surface 
temperature changes and average daily soil moisture was 
developed. This algorithm was applied using MODIS products 
of clear days during crop growing seasons (May, July, and August 
of 2004 and 2005) in Oklahoma. We used two sets of validation 
data, Oklahoma Mesonet and Little Washita Micronet soil 
moisture observations, to compare with the three estimates: 1-km 
downscaled soil moisture values, AMSR-E soil moisture values, 
and NLDAS soil moisture values. Statistical analysis was used to 
study the accuracy of the downscaling algorithm.

Several observations can be made using these results. First, the 
regression relationship supports our assumption that the surface 
temperature change depends on the wetness of the land surface 
and that the vegetation modulates this relationship. Second, the 
1-km downscaled maps provide details on the soil moisture spatial 
distribution patterns in Oklahoma that are not available using 
AMSR-E product. The results also compare well with Oklahoma 
Mesonet soil moisture values. Third, considering Mesonet is biased 
wet (Illston et al., 2008), as is NLDAS (Mo et al., 2012), and that 
our system is based on NLDAS, we also have a slight bias. However, 
we are biased drier compared to Mesonet and NLDAS. This feature 
can be observed in Fig. 9a by comparing the distribution pattern 
among NLDAS, AMSR-E, and 1-km results, where more points of 
1-km comparison plot are below the diagonal line than the other 

two comparison plots. So the downscaled results are quite close to 
true values. Fourth, validation results of the three estimated soil 
moisture products against field observations from the Oklahoma 
Mesonet show that the slope for 1-km downscaled soil moisture are 
generally better and the spatial standard deviation is partially better 
than NLDAS and AMSR-E products. The overall spatial standard 
deviation of 1 km on August 2005 is closer to Mesonet, while on 
July 2005 and August 2005 is closer to either NLDAS or AMSR-E. 
Although the RMSE of 1-km downscaled soil moisture is poorer 
than the other soil moisture datasets, the unbiased RMSE of 1 km 
is better for some months. The p value of the Chi-squared goodness 
of fit test also shows that the comparison of field data with the 
1-km downscaled map is statistically better than the NLDAS and 
AMSR-E products. Another advantage of the 1-km downscaled 
soil moisture result can be observed from comparisons with Little 
Washita Micronet data. The overall slope and spatial standard 
deviation using 1-km downscaled results in Table 6 are definitely 
better than the other two datasets, AMSR-E and NLDAS. In 
addition, the overall unbiased RMSE using 1-km downscaled is 
always better than NLDAS, while better than AMSR-E on July 
2005. Although the results of Chi-squared test using data from the 
Micronet site and the three soil moisture datasets are poor, we did 
observe an improvement in the comparison of the results.

By comparing the scatter plots of spatial standard deviation, 1-km 
downscaled soil moisture demonstrates a better correlation with 
in situ soil moisture than NLDAS and AMSR-E soil moisture. 
Such trends are also noted when comparing with Micronet 
observations, where the NLDAS and AMSR-E comparisons are 
biased. Considering the slope and spatial standard deviation are 
two important variables that indicate similarity between observed 
and predicted measurements, this downscaling methodology not 

Table 6. Monthly generalized comparison statistics between the 1-km downscaled, NLDAS and AMSR-E soil moisture compared to the Little Washita 
soil moisture observations for 3 mo. The 1-km downscaled values are underlined.

Day Dataset Slope RMSE Unbiased RMSE Spatial SD Number of points

——————————— m3 m−3  ——————————

May 2004 1-km downscaled 0.364 0.063 0.024 0.015 64

AMSR-E 0.080 0.055 0.020 0.003

NLDAS 0.145 0.049 0.025 0.010

Micronet 0.027

July 2005 1-km downscaled 0.120 0.062 0.027 0.027 61

AMSR-E 0.071 0.041 0.029 0.006

NLDAS 0.047 0.054 0.031 0.004

Micronet 0.028

Total 1-km downscaled 0.242 0.063 0.026 0.021 125

AMSR-E 0.076 0.048 0.025 0.005

NLDAS 0.096 0.052 0.028 0.007

Micronet 0.028
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only increases resolution and adds information about the spatial 
variability of the soil moisture within the AMSR-E estimates, 
but also preserves the average soil moisture. Any bias between 
the in situ observations and AMSR-E soil moisture will also 
be ref lected in the disaggregated soil moisture estimates. We 
reported the unbiased RMSE estimates for different soil moisture 
products. However, the RMSE does not reflect the added value 
that the downscaled soil moisture provides about the spatial 
heterogeneity of soil moisture. The validation results proved 
that the soil moisture downscaling algorithm is applicable. In 
addition, if we compare our results with those reported in the 
literature and presented above (Table 1), we note that this analysis 
included a large area (the entire state of Oklahoma) and a longer 
period of time compared to some previous studies, which only 

included shorter-term field experiments or smaller catchments, 
and our results show much lower RMSE. These include works by 
Rodríguez-Iturbe et al. (1995), Mohanty et al. (2000), Famiglietti 
et al. (2008), Heathman et al. (2012), and Minet et al. (2012) on 
spatial variability and uncertainty of soil moisture across scales 
as they relate to our research. In particular, studies reported by 
Mohanty et al. (2000) and Famiglietti et al. (2008) were based 
on observations made over the same study domain. These papers 
clearly demonstrated the scaling properties of soil moisture and 
the ability to observe soil moisture patterns across different scales. 
Remote sensing observations provide a spatially average estimate 
of soil moisture over the entire footprint.

Fig. 9. (a) Overall scatter plots of NLDAS, AMSR-E, and 1-km soil moisture versus the Little Washita Micronet soil moisture observations for all the 
months. (b) Overall scatter plots of NLDAS, AMSR-E, and 1-km detrended soil moisture versus the Little Washita Micronet soil moisture observa-
tions for all the months.

Fig. 10. Overall scatter plots of spatial standard deviation of NLDAS, AMSR-E, and 1-km soil moisture versus the Oklahoma Mesonet and Little 
Washita Micronet soil moisture observations for all the months.
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Regarding these probable sources of uncertainty, several limitations 
still exist in this algorithm: (i) the MODIS temperature and NDVI 
products are often influenced by cloud coverage, so this method 
for downscaling is not appropriate for all weather conditions; (ii) 
the NDVI data comes from two sensors (AVHRR and MODIS) 
that were available for different time periods; (iii) the accuracy 
of NLDAS and AMSR-E soil moisture determines the accuracy 
of the 1-km downscaled soil moisture; (iv) only vegetation and 
temperature were used to develop this downscaling algorithm, and 
high spatial resolution data of these variables would be required 
for broader applications. This methodology is based on preserving 
the 25-km mean soil moisture, as is done for the AMSR-E soil 
moisture estimates. So, any overall day-to-day bias present in 
the AMSR-E soil moisture retrievals also will be present in the 
disaggregated 1-km estimates. Future work will combine this 
approach with our previous active–passive downscaling approach 
(Narayan et al., 2004), yielding an advantage that it can be applied 
in cloud-free as well as cloudy areas.
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